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1. INTRODUCTION

It appears to be the rule rather than the exception that usefully detailed stochastic

models for complex systems are such that it is extremely difficult or impossible to

obtain an exact analytic solution. Simulation is essentially a controlled statistical

sampling technique which can be used to study complex stochastic systems when

analytic and/or numerical techniques do not suffice. We concentrate here on

discrete-event digital simulation in which the behavior of a specified stochastic system

is observed by sampling on a digital computer system and stochastic state transitions

occur only at a set of increasing (random) epochs of time. In discrete-event simulations

most of the stochastic processes that we encounter have piece wise -constant sample

paths.,

When simulating, we experiment with a stochastic system and observe its

behavior. In the course of the simulation we measure certain quantities associated with

the system, and using statistical techniques, draw inferences about characteristics of

well defined random variables. The most obvious methodological advantage of

simulation is that in principle it is applicable to stochastic systems of arbitrary

complexity. It is, however, a decidedly nontrivial matter in practice to obtain from a

simulation information which is both useful and accurate, and to obtain it at reasonable

cost. The difficulties *arise primarily from the inherent variability in a stochastic

system, and it is necessary to seek theoretically sound and computationally efficient

methods for carrying out the simulation. Apart from implementation considerations,

important concerns for simulation relate to generation methods for sample paths of the

stochastic system under study, the design of simulation experiments, and the analysis of

simulation output. Since results of a simulation are based on observation of a stochastic
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system, it is absolutely essential that some assessment of the precision of results be

provided.

Implicit in the implementation of any simulation is the definition of an

appropriate "state" for the system. Heuristically, the system state m~intains sufficient

information about the system so that state transitions that occur over time completely

determine the quantities of interest. This "state of the system at time P constitutes a

stochastic process in continuous or discrete time. When carrying out the simulation we

observe the behavior of this process as it evolves in time. In order to do so it is

necessary to have a means of generating sample paths of this process and to have

methods for obtaining valid estimates of the quantities of interest in the system.

In this paper we focus on simulation methods for non-Markovian systems in

continuous time; i.e., systems whose state cannot be modeled as a Markov chain with

countable state space. This is characteristic of local area computer network models (see

e.g. Loucks, Hamacher, and Preiss [9]) where it is important to incorporate system

control algorithms explicitly into the simulation model. We restrict attention to those

discrete-event simulations whose underlying stochastic process can be represented as a

generalized semi-Markov process (oSMP) in the sense of Whitt [15].

In addition to providing a framework for generating sample paths of the

underlying stochastic process of the simulation, the GSMP representation is particularly

useful for simulation of non-Markovian systems in that it leads to methods for

obtaining recurrence properties of the underlying stochastic process; cf. Glynn [5].

Such properties are needed to establish estimation procedures based on regenerative

processes; cf. Fossett [4] and Iglehart and Shedler [6]. For specific non-Markovian
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systems (e.g., ring and bus network models) it can be difficult to determine conditions

(distributional assumptions) under which the underlying stochastic process is

regenerative. In this paper we develop "geometric trials" arguments (cf. Nummelin

[11] and Tuominen and Tweedie [141) which can be used to show the applicability of

regenerative simulation methods.

2. GENERALIZED SEMI-MARKOV PROCESSES

Heuristically, a GSMP (Matthes [10], K6nig, Matthes and Nawrotzki [7], [8])

moves from state to state in accordance with the occurrence of events associated with

the occupied state. Each of the several possible events associated with a state compete

to trigger the next transition, and each of these events has its own distribution for

determining the next state. At each state transition of the GSMP, new events may be

scheduled. For each of these new events, a clock indicating the time until the event is

scheduled to occur is set according to an independent (stochastic) mechanism. If a

scheduled event does not trigger a transition but is associated with the next state, its

clock continues to run; if such an event is not associated with the next state, it is

abandoned.

Following Whitt [15], formal definition of a GSMP is in terms of a general state

space Markov chain (GSSMC) which describes the process at successive epochs of state

transition. Let S be a finite or countable set of states and E - {el,e 2,...,eM] be a finite

set of events. For se S, E(s) denotes the set of all events that can occur when the OSMp

is in state s. When the process is in state s, the occurrence of an event ee E(s) triggers

a transition to a state s'. We denote by p(s';s,e) the probability that the new state is s'

given that event e triggers a transition in state s. For each se S and ee E(s) we assume

that p(';s,e) is a probability mass function. The actual event ec E(s) which triggers a



4

transition in state s depends on clocks associated with the events in E(s) and the speeds

at which these clocks run. Each such clock records the remaining time until the event

triggers a state transition. We denote by r., (>O) the deterministic rate at which the

clock c,, associated with event ej, runs in state s; for each sE S, rsi = 0 if e, XE(s). We

assume that rsi>o for some ec E(s). (Typically in applications, all speeds r,, are equal

to one. There are, however, models in which speeds other than unity as well as

state-dependent speeds are convenient. For example, zero speeds are needed in

queueing systems with service interruptions of the preemptive-resume type; cf. Shedler

and Southard [12].)

For se S define

C(s) = {(c 1,...,cM): ci k 0 and c, > 0 if and only if eC E(s);

(2.1) cr 1!Oc-- - for ii~] with cjcjrrj> 0}.

The conditions in Equation (2.1) ensure that no two events simultaneously trigger a

transition (as defined below). The set C(s) is the set of possible clock readings in state

s. The clock ci and event e, are said to be active in state s if ei cE(s). For

s c S and cc C(s), let

(2.2) t° = t'(s,c) = min {cr'js,
{i:e jC E(s)}

where crs is taken to be + ao when rsi = 0. Also set

(2.3) c, - c1 (s,c) = ci - I*(s,c)rsi, e, c E(s)

and

(2.4) - i*(s,c) = i such that eic E(s) and c (s,c) = 0.
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Beginning in state s with clock vector c, t*(s,c) is the time to the next state transition

and i (s,c) is the index of the unique triggering event e= e*(s,c) = eis(sc).

At a transition from state s to state s' triggered by event e-, new clock times are

generated for each e' iN(s';s,e ) = E(s')-(E(s)-[e}). The distribution function of such

a new clock time is denoted by F(.;s ,e ,s,e) and we assume that F(O;s'e'IS,e 0.

For e'e O(s';s,e*) = E(s')n (E(s)-{eDj), the old clock reading is kept after the

transition. For e'c (E(s)-Ie'})-E(s'), event e' ceases to be scheduled after the

transition.

Next consider a ssMc {(S,Cn):n>O} having state space

= U (is] xC(s))

SE S

and representing the state (Sn) and vector (C,) of clock readings at successive state

transition epochs. (The ith coordinate of the vector Cn is denoted by Cni.) The

transition kernel of the Markov chain [(Sn,Cn):n2O is

(2.5) P((s,c),A) = p(s';s,e*) l F(a,',eps,e ) rl 1o (CO),

eC N(sa) e O(s')

where N(s') M' N(s';s,e), O(s') - O(s';s,e*), and

A - Is'}x{(c',...,cM)EC(s'): c < a, forej cE(s')}.

The set A is the subset of T which corresponds to the GSMP entering state s, with the

reading ci on the clock associated with event e. e E(s') set to a value in [O,a,].
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Finally, the GSMP is a piece-wise constant continuous time process constructed

from the GSSMC {(S,,Cn):n>O1 in the following manner. Denote by the time of the

nth state transition, n>O. (We assume that

P{sup f + oel(So,Co)} = 1
nal

for all initial states (So,Co).) Then set

(2.6) X(I) fN(t),

where

N(t) = max [n > 0: 'n : ti.

The process tX(t):ta01 is a GSMP.

The following examples illustrate the use of the OSMP model as a formal

specification of a discrete-event simulation of a non-Markovian system.

(2.7) EXAMPLE. Consider a unidirectional ring network having a fixed number of

ports, labelled 1,2,...,N in the direction of signal propagation. At each port message

packets arrive according to a random process and queue externally. A single control

token circulates around the ring from one port to the next. The time for the token to

propagate from port N to port I is a positive constant, RN, and the time for the token

to propagate from port j-1 to port j is a positive constant, Rj_. j = 2,3,...,N. When a

port observes the token and there is a packet queued for transmission, the port converts

the token to a connector and transmits a packet followed by the token pattern; the

token continues to propagate if there is no packet queued for transmission. By

destroying the connector prefix the port removes the transmitted packet when it



returns around the ring. Assume that the time for port j to transmit a packet is a

positive random variable, Lj, with finite mean. Also assume that packets arrive at

individual ports randomly and independently of each other; i.e., the time from end of

transmission by port j until the arrival of the next packet for transmission by port j is a

positive random variable, Aj, with finite mean. Note that there is at most one packet

queued for transmission at any time at any particular port.

Set

(2.8) X(I) = (ZI(I)--ZN(OM(ON(I)),

where

1 if there is a packet queued for transmission at port j at time t

0 otherwise

j if port j is transmitting a packet at time I
M (t) = 9

0 if no port is transmitting a packet at time I

N(t) - I if at time t port N is transmitting a packet or the token is propagating to port

1, and N(t) , j if at time t port j-1 is transmitting a packet or the token is propagating

to port j, j= 2,...,N.

The process {X(t):t>Ol defined by Equation (2.8) is a GSMP with a finite state

space, S, and event set, E. The events in the set E are: "observation of token," "end

of transmission," and "arrival of packet for transmission by port j," j - 1,2,...,N. For

s - (zl,...,zN,m,n) C S, the event sets E(s) are as follows. The event "end of

transmission" C E(s) if and only if m>O and "observation of token" C E(s) if and only if
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m = 0. The event "arrival of packet for transmission by port j "l E(s) if and only if

.-j = 0 and mj.

If s-- (z I ,...,N,m,m + 1) e S with 0<m<N, s' = (z ,...,zN,O,m + 1) (or if

s = (zl,...,zN,N,1) e S, s' = (zI ....PN,0,1)) and e="end of transmission," then the state

transition probability p(s';s,e) = 1. If s- -(z 1 ... ,zn 1 , 1,z, I ... ,z,On)CS with n<N,

s= (Zl,...,Zn_1i,On+1,... ,ZN,n,n + 1) (or if s = ( 1.... ZNII1,0,N) ie S and

s' (zj,...,zNlI,O,N,l)) and e="observation of token," then p(s';s,e) = 1. If
s = (z 1 ... z 1 ,0 ,OZn,...N,O,n) C S, s' = (Zl,...,zn lO,Zn+1 .... ZN,O,n + 1), and

e= "observation of token," then p(s';s,e) = 1. If s = (z ,O,21+l,...,zN,m,m + 1) E S

with moj and O<m<N, s' = (z1,...,zjl,l,zj+l,...,zN,m,m + 1), (or if

s = (Z1.. Zj- 0Zj+,.,ZN,,)CS with Ngj,. s' = (z,...,zj~j,1,zj+ I .. ZNN,1)), and

e="arrival of packet for transmission by port j," then p(s';s,e) = 1. All other state

transition probabilities p(s';s,e) are equal to zero.

The distribution functions of new clock times for events e'C N(s';s,e*) are as

follows. If e' = "end of transmission" and s' = (Z1....zN,m,n), then

F(x;s',e',s,e*) = PILm!X] for all s and e° such that p(s';s,e)>O. If e' = "observation of

token" and s' - (zl,...,ZNO,n), then F(x;s',e',s,e') = 1 fRa (x). If e' = "arrival of

packet for transmission by port j" and s'= (z, ..... zj_,,O,zj+l,...,zN,Oi + 1), then

F(x;s',e' ,se ) = P(Aj!xf.

(2.9) EXAMPLE. Consider a ring network having a fixed number, K, of equal size

slots, and a fixed number of equally spaced ports, labelled 1,2,...,N in the direction of

signal propagation. At each port constant (slot size) length message packets arrive

according to a random process and queue externally. The propagation delay from one
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port to the next is a positive constant, R. We assume that the number of ports, N, is a

multiple of K and (so that there is no loss of utilization due to "unused bits") that the

time to transmit a message packet is equal to NR/K. The lead "full/empty" bit

maintains the status of each slot. Subject to the restriction that no port can hold more

than one slot simultaneously, a port that has a packet queued for transmission and

observes the status bit of an empty slot sets the bit to 1 ("full") and starts

transmission (begins filling the slot). Transmission ends when the slot contains the

entire packet. When the status bit of the filled slot propagates back to the sending

port, the port resets the bit to 0 ("empty") and releases the slot. To ensure that all

ports have an opportunity to transmit, a port which releases a slot passes the empty slot

to the next port. Assume that packets arrive at individual ports randomly and

independently of each other; i.e., the time from end of transmission by port j until the

arrival of the next packet for transmission by port j is a positive random variable, A,

with finite mean. Note that there is at most one packet queued for transmission at any

time at any particular port.

Set

(2. O) X(t) =(Z (t),....ZN(t),A t K(t),NI(t)9....NK(t))

where

I if there is a packet queued for transmission at port j at time t
z oe=

0 otherwise
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for i =1,2,...K

j if port j holds slot i at time t

0 otherwise

Ni(t) I if at time ! the status bit of slot i is propagating to port 1, and N(t) j I if at

time t the status bit of slot i is propagating to port j, j = 2,3,...,N. For any i (Ii<K)

the vector (ZI(), ... ZN()I,MI(t),...,MK(t),Ni(t)) contains the same information about

the system as the vector X(t). Incorporation of all the components N()0.,NK(t) into

the state vector facilitates generation of the process.

The process fX(t):t>Oj defined by Equation (2.10) is a GSMP with a finite state

space, S, and event set, E. The events in the set E are: "observation of status bits by

ports" and "arrival of packet for transmission by port j," j = 1,2,...,N. Let

S-- (Zl... ,zNmnl....mK,nl,...,nK) E S. The event "observation of status bits by

ports" o E(s) for all scS. The event "arrival of messsage for transmission by port

j" E(s) if and only if zj = 0 and for each i either (i) m,9j or (ii) m i = j and

n,-1 = j-1 + I (mod N) for some integer I such that N/K<I N. Note that the ends of

transmission coincide with the occurrence of particular "observation of status bits by

ports" events. Suppose, for example, that there are N = 4 ports and K = 2 slots and

that s = (0,0,0,0,1,0,2,4); i.e., port 1 is transmitting a packet in slot 1, slot 2 is empty,

the status bit of port I is propagating to port 3, and the status bit of slot 2 is

propagating to port 4. Then the occurrence of the event "observation of status bits by

ports" in state s corresponds to an end of transmission by port 1.

(2.11) EXAMPLE. Consider a collision-free bus network (cf. Eswaran, Hamacher, and

Shedler (3]) with Nports, numbered 1,2,...,N from left to right; see Figure 1. Message
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packet traffic on the passive bilateral bus is transmitted/received by port j at tap B(j).

In addition to the bus, a one-way logic control wire also links the ports. Associated

with each port j is a flip-flop, S(j), called the send flip-flop. The signal PU/), called the

OR-signal, tapped at the control wire input to port j is the inclusive OR of the send

flip-flops of all ports to the left of port j. Denote by T the end-to-end bus propagation

delay. [For technical reasons, T actually must be the end-to-end propagation delay plus

a small (fixed) quantity.] Denote the actual propagation delay along the bus between

port i and port j by T(ij), ij = 1,2,...,N. Thus, T(ij) = T(j,i)<T for all ij and

T(ij) + T(j,k) = T(i,k) for all i<j<k. (We assume that T(ij)#T(kj) for distinct i,k

and all j.) Let R(U) be the propagation delay (including gate delays) along the control

wire from port j to port N, j = 1,2,...,N; thus, R(1);R(2)>...zR(N) = 0. Denote by

R(ij) the propagation delay along the control wire from port i to port j. We assume

that signal propagation along the control wire is slower than along the bus and that

delays along shorter sections of each path scale proportionally; i.e., R(1)>T and

R(ij)>T(ij) for all iQ.

Specification of distributed control scheme A] is in terms of an algorithm for an

individual port j. Packets (for transmission by port j) which arrive while an execution

of the algorithm by port j is in progress queue externally. Upon completion of this

execution of the algorithm, one of any such packets immediately becomes available to

port j for transmission and the next execution of the algorithm begins.

Algorithm A I

* SetSU) to 1

Wait for a time interval R(j) + T
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Wait until the bus is observed (by port j) to be idle AND P(i)=O; then start

transmission of the packet, simultaneously resetting S(j) to 0.

For simplicity we assume that there can be at most one packet in queue at each

port. Specifically, suppose that the time from end of transmission by port j until the

arrival of a next packet for transmission by port j is a positive random variable, AJ,

with finite mean. Also suppose that the time for port j to transmit a packet is a

positive random variable, Lj, with finite mean.

Set

(2.12) W(t) = (TV" () . N(t)) ,

where Wj(t) equals I if at time t port j has set its flip-flop but has not yet completed

the R(j) + T wait, equals 2 if port j has completed the R(j) + T wait but has not

started transmission, equals 3 if port j is transmitting, and equals 4 otherwise. Next set

(2.13) U(t) = (Ul(t) ... UNt) ,

where Uj(t) equals 1 if port j observes the bus to be busy at time t and equals 0

otherwise. Also set

(2.14) V(1) = 2,1(1),T3,1(1),V3.2(1),V4,1(t )  VN,N.1(t)) ,

where VJk(t) equals 1 if port j has observed that port k has set its flip-flop and equals

0 otherwise. (Port j observes P(j)= I at time t if and only if VPk(t) = 1 for some k<j.)

Finally, set

X(I) - (J(t),U(I),V(t)).
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Then the stochastic process IX(O:tzO1 is a GSMP with a finite state space, S, and event

set, E. The events in the set E are: "end of transmission by port j," "end of wait for

Rj) + T," "setting (to 1) of flip-flop by port j," "observation by port j of start of

transmission," "observation by port j of end of transmission," "observation by port j of

the setting (to 1) of flip-flop by port k to the left," and "observation by port j of the

resetting (to 0) of a flip-flop by port k to the left," j = 1,2,...,N. For

s = (w ,.....WN,Ul,...,u,V2, I..... N.N.i ) C S the event sets E(s) are as follows. The event

set E(s) contains "end of transmission by port j" if and only if wj = 3. The event "end

of wait for R(.) + T"C E(s) if and only if wj = 1. The event "setting of flip-flop by

port j" E E(s) if and only if wj = 4. The event "observation by port j of start of

transmission" E E(s) if and only if wk = 3 for some k and uj = 0. The event

"observation by port j of end of transmission" E E(s) if and only if wk = 3 for some k

and uj = 1. The event "observation by port j of setting of flip-flop by port k to the

left" c E(s) if and only if wk = 1 for some k<j and VkJ = 0. The event "observation of

resetting of flip-flop by port k to the left" E E(s) if and only if wk = 3 for some k<j

and Vkj = 1.

The distribution functions of new clock times for events e'E N(s';s,e*) are as

follows. If e' = "end of transmission by port j" E(s')-(E(s)-{e1) and p(s';s,e*)>O,

the clock setting distribution function F(x;s',e',s,e) = P[Ljrxl. If e' = "end of wait for

R() + T," the clock setting distribution function F(x;s',e',s,e*)= l ) (x). If

e' = "setting of flip-flop by port j," the . clock setting distribution function

F(x;s',e',s,e*) = P[Aj5x]. If e' = "observation by port j of start of transmission," the

clock setting distribution function F(x;s' ,e',s,e*) = (x) if wk - 3. If

e' = "observation by port j of end of transmission," the clock setting distribution
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function F(x;s',e',s,e*)= 1 [T(k.j).-)(x) if wj = 4. If e' = "observation by port j of

setting of flip-flop by port k to the left," the clock setting distribution function

F(x;s',e',s,e*) = l[R(kj),-)(x) if wk = 1 (k<j). If e' = "observation by port j of

resetting of flip-flop by port k to the left," the clock setting distribution function

F(x;s',e',s,e*) = l[R(kJ),,)(X) if w = 3.

3. RETURNS TO A FIXED STATE

Recurrence properties of the underlying stochastic process of a discrete-event

simulation are needed to establish estimation procedures based on regenerative

processes. Lemma (3.1) is a special case of a generalized Borel-Cantelli lemma due to

Doob [2, p. 324]. The elementary proof given below uses a "geometric trials"

argument.

(3.1) LEMMA. Let [Yn:n>O} be a sequence of random variables defined on a

probability space (2,s',P) and taking on values in a set, S. Let s'C S. Suppose that

there e-:ists 8>0 such that

(3.2) PIYn = s' I Yn-1...,Y0] Z 8 a.s.

for all n~l. Then PJYn =s' i.o.1 = 1.

Proof: Let I be the index -of first entrance time of I Yn:n201 to state s':

I -m In k 1: Y, =s'l.

Then

P1I > n) = PlYntos',...,Y 1 ,'s'l

and it is sufficient to show that Pl>n),(1-8) n for all nzl. For any n,
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P[l > n = Pt Yi#s',...,Y 1#s'} = EfPi Y,,s"...Y 1#s'

= Efi ..... I I Y .1 .....

< E{l.I .... J 0*,1(1 - 8)} = (1 - 6) P{I> n1-l

and therefore P{I>n1<(1-8)0. Q

Lemma (3.1) provides a means of showing that the underlying stochastic process

of a simulation returns infinitely often (i.o.) to a fixed state. Specifically, let

{X(t):taOI be a stochastic process with right-continuous and piece-wise constant sample

paths. and countable state space, S. Let s'c S and suppose that fT,:n>01 is an

increasing sequence of finite (Tn<a a.s.) state transition times for {X(t):t>O] such that

P1X(Tn ) = s' I X(Tn _),...,X(To)1 1 2 a.s.

for some 8>0. Then PIX(T.) = s' i.o.1 = 1 by Lemma (3.1) (with Y. = X(T.)). In

practice, it can be difficult to show that T,<a a.s.

The argument used in Example (3.3) is due to Richard Tweedie.

(3.3) EXAMPLE. In the token ring model of Example (2.7) let T. be the nth time at

which port 1 observes the token, n20. Then there is a packet queued for transmission at

ports 2,3,...,N and port 1 starts transmission of a packet at time T. if X(T n ) = s', where

s' = (0,1...,1,1,2). Lemma (3.1) implies that P{X(Tn) = s' i.o.1 = I provided that

(3.4) P[Ai > x +yIAi >y} < P{ 1.4 > x1

for all xv>0 and



16

(3.5) P{Aj !r R~i + ... + RNI > O,

j 1,2,...,N. First observe that T,,<= a.s. since

N
EI T, - I! R I + ... + Rv + Z E{LjI <

ji-

for all nal. Now set

N
8 = P {Aj : Rj + ... + RN}.

j=1

By Equation (3.5), 6>0 and we claim that

(3.6) P[X(Tn,) = s' IX(T.-1) .... X(To)I ! a .

To see this, let TI(j) be the first time after Tn- 1 that the token leaves port j; i.e.,

Tn(N) = inf it > Tnl: N(t) = 1 and M(t) = 0}

and

Tn(j) = inf {t > Tn- 1 : N(t) = j + 1 and M(t) = 01,

j = 1,2,...,N-1. The definition of Tn() implies that there is no packet queued for

transmission at port j at time T(.j) and that T,,-Tn(j)>Rj + ... + RN, the time for the

token to propagate from port j to port N. Equation (3.4) ensures that

P{Zj(Tn-) - 1 IX(Tn._)....X(TO)1 - P{Aj < Rj + ... + RNI

for all j and therefore that

PIX(Tn ) , s' I X(T,, 1 ),....X(T)) IZ IZ1 (Tn-) l,...,ZN(Tn-) -1 IX(iT_ ),....,X(To)1 I .
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4. REGENERATIVE GENERALIZED SEMI-MARKOV PROCESSES

Heuristically, a regenerative stochastic process has the characteristic property that

there exist random time points, referred to as regeneration points or regeneration times,

at which the process probabilistically restarts. Typically, a regenerative process

probabilistically starts afresh when the process returns to some fixed state. The

essence of regeneration is that between any two successive regeneration points the

evolution of the process is a probabilistic replica of the process between any other such

pair of regeneration points.

In the presence of certain regularity conditions, a regenerative stochastic process

jX(t):z>0} has a limiting distribution provided that the time between regeneration

points is finite. Furthermore, the regenerative structure ensures that the behavior of

the process between two successive regeneration points determines the limiting

distribution of the process as a ratio of expected values. A consequence of these results

(Crane and Iglehart [1]) is that a strongly consistent point estimate and asymptotically

valid confidence interval for the expected value of a general (measurable) function of

the limiting random variable X can be obtained by observation of a finite portion of a

single sample path of the regenerative process. This is accomplished by simulating the

process in cycles and measuring certain quantities defined within the individual cycles.

Irreducible and positive recurrent continuous time Markov chains having a finite

or countable state space are the most familiar.examples of a regenerative process in

continuous time. The successive entrances of such a Markov chain to any fixed state

form a sequence of regeneration points. It is frequently difficult, however, to show

that the underlying stochastic process of a non-Markovian system is regenerative.



Typically, the problem lies primarily in establishing conditions under which the process

returns infinitely often to a fixed state.

The usual formal definition (cf. Smith [13]) of a regenerative process is in terms

of the pasting together of so-called "tours." We give an equivalent definition.

(4.1) DEFINITION. A stopping time for a stochastic process jX(t):1>0 is a random

variable T (taking values in [O,oo)) such that for every finite a>0, the occurrence or

non-occurrence of the event [Tt} can be determined from the history {X(u):urt} of

the process up to time t.

(4.2) DEFINITION. The real (possibly vector-valued) stochastic process {X(t):t>O1 is

a regenerative process in continuous time provided that:

(i) there exists a sequence of stopping times {Tk:k>O} such that ITk+l-Tk:k>O} are

independent and identically distributed;

(ii) for every sequence of times O<tl1 2 <...<tm (mal) and k>0, the random vectors

{X(tI ) .... X(tm)} and [X(T k + ti ),...,X(Tk + tin)l have the same distribution and

the processes IX(t):t<Tki and {X(Tk + t):t>0} are independent.

According to Definition (4.2), every regenerative process has an embedded

renewal process. The random times {Tk:k>0 are regeneration points for the process

{X(t):t>O1 and the time interval [Tk-.,Tk) is called the kth cycle of the process. The

requirement that the regeneration points be stopping times means that for any fixed t

the occurrence of a regeneration point prior to time t (i.e., Trig) depends on the

evolution of the process {X(t):t>O1 in the interval (O,1] but not beyond time t.
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Proposition (4.3) gives a set of conditions on the building blocks of a GsMP which

ensures that the process is regenerative and that the expected time between

regeneration points is finite. The latter result is due to Peter Glynn.

(4.3) PROPOSITION. Let {X(t):t>0 be a GsMP with a finite state space, S, and event

set, E. Suppose that there exists a state s0E S and an event • CE such that

p(so;so,e*)>O for some s0c S and O(so;so,e) = E(sO)n (E(so)-[e*1) = * for all s 0 S.

Also suppose that there exists an increasing sequence of stopping times [T.:na0 that

are finite (Tn<ao a.s.) state transition times at which e* is the trigger event and 8>0

such that

P IX(T,) = so I X(YT_.1),...,X(To) 1 2 8 a.s.

Then [X(t):t>0 is a regenerative process in continuous time. Moreover, if

T nlir -n- a < a.s.

then the expected time between regeneration points is finite.

Proof: Since Tn<(o a.s. and P{X(T,) = s; IX(T, 1 ),...,X(T 0 ) I >O, Lemma (3.1)

ensures that [X(Tn):n20 hits state s0 infinitely often with probability one.

Furthermore at such a time, T., the only clocks that are active have just been set since

O(s;);s,e) - * for all s0 S. The joint distribution of X(T.) and the clocks set at time

T. depends on the past history of IX(t):i>01 only through s; , the previous state so, and

the trigger event e*. But since S is finite some previous state, so, occurs infinitely

often. Therefore, the subset of times T, at which event e* triggers a transition from

this state so to state s; are regeneration points for the process JX(i):tOI:.
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To show that the expected time between regeneration points is finite, let

{S;,:n2:l be the regeneration points; i.e.,

S'. = inf lTk > S',_,: X(Tk) = s , X(Tk-) = so}.

Then EjS',-S'X.I}<ao if and only if

li M - < CO a.s..

Next observe that S' = Tk(,f) for some sequence fk(n):n>1j and that

S n, Tk-(,) k(n) !

n k() "

Thus,

lir k(n)
n a 1im

n-0 n - cc

and it can be shown (using an argument similar to that in Lemma (3.1) and the

Borel-Cantelli lemma) that

lir(n) < c a.s.

so that

rn < c a.s.
n.D

and EtS',-S' 1 1<o. 0

(4.4) EXAMPLE. In the token ring model of Example (2.7), take sO - (0,1,...,1,1,2)

and e - "observation of token." A transition to state s6 can occur when event e is

the trigger event only if e° occurs in state so - (1,....1,0,1) and in this case the set
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O(s;so ,e*) = *. If T. is the nth time that port 1 observes the token, there exists 8>0

such that PIX(T,,) = soIX(T,),...,X(T 0 )>8 by the argument in Example (3.3). The

successive times T. at which e* is the trigger event in state so (and there is a transition

to state s;) are regeneration points for the process {X(O:t>:0.

Next observe that

Tn- T_ 1 <5 RI +... + Rj + Lln +... + LNn.

where the Lij are independent and L,. is distributed as Li. Thus,

7,. "Uk

k=1

where Uk = R 1 + ... + RN + Llk + ... + LNk. By the strong law of large numbers

n Uk -,EU

k-1

Therefore,

-F -n< . a. s.
n

and the expected time between regeneration points is finite.

5. CONCLUDING REMARKS

Most discrete-event simulations can be modeled within the OSMP framework. In

some stochastic systems, however, it is possible to define a system state which

maintains sufficient information to determine the quantities of interest and to specify

an algorithm for generating sample paths of the associated stochastic process, but the

process does not have a GSMp representation. As an example, suppose that the state of
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the collision-free bus network at time t is defined to be

where WY(t) and U(i) are as in Example (2.11), Vj(t) is the number of ports to the left

observed by port j to have set their flip-flop and V(t) = (VhI( 0 ),...,VNW)). The process

LX(t):tz>O has a finite state space, S. It does not appear to be possible, however, to

specify an event set E such that {X(t):I>O1 is a GSMP with state space, S, and event set,

E. For example, suppose that E is the set of events: "end of transmission by port j,"

"end of a wait for R(j) + T," "setting of flip-flop by port j," "observation by port j of

start of transmission," "observation by port j of end of transmission," "observation by

port j of setting of flip-flop by port to the left," and "observation by port j of resetting

of flip-flop by port to the left," j = 1,2,...,N. Then {X(t):t>O] fails to be a GSMP

because there are states for which it is not possible to determine whether or not the

event "observation by port j of setting of flip-flop by port to the left" or the event

"observation by port k of resetting of a flip-flop by port to the left" is active. (Select

ij, and k such that 15i<j<k<N and take s = (WI,..., 0N, UI,...,UNVI ... VN) with wi = 3,

wk = 1, and vj = 1.)
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